Generalized Derivations and Generalized Amenability of Banach Algebras

نویسندگان

  • Ali Zohri
  • Ali Jabbari
چکیده

Amenability is a cohomological property of Banach algebras which was introduced by Johnson in [14]. Let A be a Banach algebra, and suppose that X is a Banach A−bimodule such that the following statements hold ∥a · x∥ ≤ ∥a∥∥x∥ and ∥x · a∥ ≤ ∥a∥∥x∥ for each a ∈ A and x ∈ X. We can define the right and left actions of A on dual space X∗ of X via ⟨x, λ · a⟩ = ⟨a · x, λ⟩ ⟨x, a · λ⟩ = ⟨x · a, λ⟩, for each a ∈ A, x ∈ X and λ ∈ X∗. Suppose that X is a Banach A-bimodule. A derivation D : A → X is a linear map which satisfies D(ab) = a · D(b) + D(a) · b for each a, b ∈ A and it is called Jordan derivation in case D(x2) = D(x) ·x+x ·D(x) for each x ∈ A. It is clear that every derivation is a Jordan derivation. A derivation δ is said to be inner if there exists a x ∈ X such that δ(a) = δx(a) = a ·x−x ·a for each a ∈ A. We denote the linear space of bounded derivations from A intoX by Z1(A, X) and the linear subspace of inner derivations byN1(A, X). We consider the quotient space H1(A, X) = Z1(A, X)/N1(A, X), it is called the first Hochschild cohomology group of A with coefficients in X. The Banach algebra A is said to be amenable if H1(A, X∗) = {0} for each Banach A-bimodules X. The Banach algebra A is called weakly amenable if, H1(A,A∗) = {0} (for more details

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of generalized derivations on Banach algebras

We investigate the stability of generalizedderivations on Banach algebras with a bounded central approximateidentity. We show that every approximate generalized derivation inthe sense of Rassias, is an exact generalized derivation. Also thestability problem of generalized derivations on the faithful Banachalgebras is investigated.

متن کامل

Generalized additive functional inequalities in Banach algebras

Using the Hyers-Ulam-Rassias stability method, weinvestigate isomorphisms in Banach algebras and derivations onBanach algebras associated with the following generalized additivefunctional inequalitybegin{eqnarray}|af(x)+bf(y)+cf(z)|  le  |f(alpha x+ beta y+gamma z)| .end{eqnarray}Moreover, we prove the Hyers-Ulam-Rassias stability of homomorphismsin Banach algebras and of derivations on Banach ...

متن کامل

MODULE GENERALIZED DERIVATIONS ON TRIANGULAUR BANACH ALGEBRAS

Let $A_1$, $A_2$ be unital Banach algebras and $X$ be an $A_1$-$A_2$- module. Applying the concept of module maps, (inner) modulegeneralized derivations and  generalized first cohomology groups, wepresent several results concerning the relations between modulegeneralized derivations from $A_i$ into the dual space $A^*_i$ (for$i=1,2$) and such derivations  from  the triangular Banach algebraof t...

متن کامل

Generalized Approximate Amenability of Direct Sum of Banach Algebras

In the present paper for two $mathfrak{A}$-module Banach algebras $A$ and $B$, we investigate relations between $varphi$-$mathfrak{A}$-module approximate amenability of $A$, $psi$-$mathfrak{A}$-module approximate amenability of $B$, and $varphioplus psi$-$mathfrak{A}$-module approximate amenability of $Aoplus B$ ($l^1$-direct sum of $A$ and $B$), where $varphiin$ Hom$_{mathfrak{A}}(A)$ and $psi...

متن کامل

Generalized notion of character amenability

This paper continues the investigation of the rst author begun in part one. The hereditary properties of n-homomorphism amenability for Banach algebras are investigated and the relations between n-homomorphism amenability of a Banach algebra and its ideals are found. Analogous to the character amenability, it is shown that the tensor product of two unital Banach algebras is n-homomorphism amena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013